

Smoking and its effect on pulmonary function

Prof. Dr. Wim Janssens Department of Respiratory Diseases, UZ Leuven BREATHE - CHROMETA, KU Leuven

Conflicts of interest

- Received research grants from Chiesi, AZ, Roche, PulmonX, GSK
- Received consultancy and lecture fees from GSK, Chiesi, AZ, Griffols

Scientific disclosure 1

Proposed Taxonomy (Etiotypes) for COPD

lassification	Description
ienetically determined COPD COPD-G)	Alpha-1 antitrypsin deficiency (AATD) Other genetic variants with smaller effects acting in combination
OPD due to abnormal lung evelopment (COPD-D)	Early life events, including premature birth and low birthweight, among others
nvironmental COPD	
Cigarette smoking COPD (COPD-C)	 Exposure to tobacco smoke, including <i>in utero</i> or via passive smoking Vaping or e-cigarette use Cannabis
Biomass and pollution exposure COPD (COPD-P)	Exposure to household pollution, ambient air pollution, wildfire smoke, occupational hazards
OPD due to infections (COPD-I)	Childhood infections, tuberculosis-associated COPD, WHIV associated COPD
OPD & asthma (COPD-A)	Particularly childhood asthma
OPD of unknown cause (COPD-U)	

*Adapted from Celli et al. (2022) and Stolz et al. (2022)

Scientific disclosure 2

Zhang et al. Ecotoxicology 2023; 114426

Smoking and pathogenesis

AAT: α1-antitrypsin deficiency NE: Neutrophil elastase EndMT: Endothelial-mesenchymal transition Rbm: Reticular basement membrane

Created with BioRender.com

Smoking and pathogenesis

Smoking and airway pathology

Small airways – silent zone

Small airways disappear

Small airways disappear with ageing

Disappearance of small airways on whole lung

Exposure at early age and adolescence

Spirometry as comprehensive tool for measuring disease

- Bronchial wall thickening by inflammation
- Muscular contraction and airway remodelling
- Intraluminal secretions and mucus plugs

Intraluminal diameter of airway reduces

- Loss of elasticity and alveolar pressure driving pressure for expiration
- Loss of lung tissue and airway interdependence loss of alveolar attachments

Collapse of small airways with forced expiration

- Underdevelopment of airway tree differentiation
- Loss of airways generations

Reduced total airway surface – increase in total airways resistance

 $\mathsf{FEV}_1,$ forced expiratory volume in 1 second; FVC, forced vital capacity Speaker's own figure

Spirometry as comprehensive tool for measuring disease

- Bronchial wall thickening by inflammation
- Muscular contraction and airway remodelling
- Intraluminal secretions and mucus plugs

Intraluminal diameter of airway reduces

- Loss of elasticity and alveolar pressure driving pressure for expiration
- Loss of lung tissue and airway interdependence loss of alveolar attachments

Collapse of small airways with forced expiration

- Underdevelopment of airway tree differentiation
- Loss of airways generations

Speaker's own figure

Reduced total airway surface – increase in total airways resistance FEV₁, forced expiratory volume in 1 second; FVC, forced vital capacity

numbers

Spirometry diagnosis

A. Spirometry - Normal Trace B. Spirometry - Airflow Obstruction Figure 2.1

Airways /lung disease prior to the diagnosis of COPD

The Lancet Commissions

Airways /lung disease in PRE COPD

 Table 1. Patient Characteristics

Characteristic	Control	Pre-COPD	GOLD I	GOLD II	GOLD III/IV
Number of patients	10	10	6	6	7
Age, yr	65 ± 10	66 ± 7	64 ± 7	67 ± 6	63 ± 4
BMI, kg/m ²	26.1 ± 4.1	25.0 ± 3.0	22.4 ± 3.3	23.5 ± 2.5	22.1 ± 3.0
Sex (M//F)	4//6	5//5	3//3	5//1	0//7
Ever-smoker	5	10	6	6	7
>5% CT emphysema	0	10	5	6	7

Diagnosis: other test than spirometry vs. pre-COPD

The Lancet Commissions

Han M, et al. AJRCCM 2021; 203: 414-23

CHROT

Lung function trajectories

Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease

Peter Lange, M.D., Dr. Med. Sc., Bartolome Celli, M.D., Alvar Agustí, M.D., Ph.D., Gorm Boje Jensen, M.D., Dr. Med. Sc., Miguel Divo, M.D., Rosa Faner, Ph.D., Stefano Guerra, M.D., Ph.D., Jacob Louis Marott, M.Sc., Fernando D. Martinez, M.D., Pablo Martinez-Camblor, Ph.D., Paula Meek, R.N., Ph.D., Caroline A. Owen, M.D., Ph.D., Hans Petersen, Ph.D, Victor Pinto-Plata, M.D., Peter Schnohr, M.D., Dr. Med. Sc., Akshay Sood, M.D., M.P.H., Joan B. Soriano, M.D., Yohannes Tesfaigzi, Ph.D., and Jørgen Vestbo, M.D., Dr. Med. Sc.

Different trajectories towards COPD

Framingham offspring cohort (n= 1849) Copenhagen City Heart study (n= 1397) Lovelace Smokers cohort (n=1553)

Identification of 4 trajectories

- TR2: Small lungs but no COPD

- TR3: Normal Initial FEV1 with rapid decline leading to COPD
- TR3: Small lungs leading to COPD

Different trajectories – Different prognosis

Pre- COPD (PRISM) with mortality

Lung function decline

Smoking Cessation and Lung Function in Mild-to-Moderate Chronic Obstructive Pulmonary Disease

The Lung Health Study

PAUL D. SCANLON, JOHN E. CONNETT, LANCE A. WALLER, MURRAY D. ALTOSE, WILLIAM C. BAILEY, A. SONIA BUIST, and DONALD P. TASHKIN for the Lung Health Study Research Group

Division of Pulmonary and Critical Care Medicine, Mayo Foundation, Rochester, Minnesota; Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota; Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia; Veterans Hospital, Case Western Reserve University, Cleveland, Ohio; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama; Department of Veterans Affairs Medical Center, Birmingham, Alabama; Department of Medicine and Physiology, Oregon Health Sciences University, Portland, Oregon; and Division of Pulmonary and Critical Care Medicine, Department of Medicine, UCLA School of Medicine, Los Angeles, California

Quantification of lung function decline

TABLE 2

MEAN ANNUAL CHANGE IN FEV₁ FROM YEAR 1 TO YEAR 5, BY YEAR 5 SMOKING STATUS*

	Sustained Quitters	Intermittent Quitters	Continuing Smokers	All Smoking Groups
SI-P	-32 (46)	-47 (57)	-62 (55)	-50 (55)
UC	-30 (54)	-39 (57)	-62 (55)	-55 (57)
Total	-31 (48)	-43 (57)	-62 (55)	-52 (56)

Definition of abbreviations: FEV_1 = forced expiratory volume in 1 s; SI-P = special intervention and placebo; UC = usual care.

* Data presented are means (SD); change in FEV₁ is presented as milliliters per year.

Smoking cessation and impact on functional decline

Smoking cessation and impact on lung function decline

Smoking cessation, lung function, and weight gain: a follow-up study

Susan Chinn, Deborah Jarvis, Roberto Melotti, Christina Luczynska, Ursula Ackermann-Liebrich, Josep M Antó, Isa Cerveri, Roberto de Marco,

Lancet 2005; 365: 1629–35

솏

Smoking cessation and impact of lung function

867

SMOKING

Smokers with airway obstruction are more likely to quit smoking

M Bednarek, D Gorecka, J Wielgomas, M Czajkowska-Malinowska, J Regula, G Mieszko-Filipczyk, M Jasionowicz, R Bijata-Bronisz, M Lempicka-Jastrzebska, M Czajkowski, G Przybylski, J Zielinski

Thorax 2006;**61**:869–873. doi: 10.1136/thx.2006.059071

Table 3 Smoking cessation rates after 12 months of follow up stratified by baselinespirometric results

		Airway obstruction			
Spirometric results	Normal	Mild	Moderate	Severe	Any
All subjects (n) Quitters (n) Cessation rate (%) p value*	3441 413 12.0%	384 56 14.6% 0.229	939 151 16.1% 0.005	357 66 18.5% 0.003	1680 273 16.3% 0.0003

*The p value compares the cessation rate in smokers with airway obstruction with the rate in smokers with normal spirometric results.

What about other lung function tests

RV/TLC ratio as a proxy for airtrapping

■ controle ■ GOLD 1 ■ GOLD 2 ■ GOLD 3 ■ GOLD 4

Diffusing capacity

Smoking

- □ Disturbed alveolar ventilation (high RV/TLC with low FVC)
- □ Reduced alveolo-capillary membrane
- □ Impaired V/Q matching
- □ Increased Carboxy Hb

Diffusiecapaciteit in COPD

Leuven COPD cohort

GOLD 0: n = 70 GOLD 1: n = 70 GOLD 2: n = 70 GOLD 3: n = 70 GOLD 4: n = 70

Matched for age, gender and smoking status

Conclusion and take-home message

